Nr. |
|
Titel |
Beschreibung |
Übungen |
M.1 |
|
Die Betragsfunktion |
Funktionsweise der Betragsfunktion |
|
M.2 |
|
Grafische Darstellung von Geraden |
Zeichnen von Geraden in einem
Koordinatensystem |
|
M.3 |
|
Lineare Ungleichungen mit zwei
Variablen |
Grafische Darstellung von
Lösungsmengen einzelner Ungleichungen und Systemen von Ungleichungen. |
|
M.4 |
|
Potenz- und Exponentialgleichungen.
Einführung |
Auflösen der Gleichung a^x = c
nach der Basis oder dem Exponenten der Potenz. Im ersteren Fall
handelt es sich um eine Potenzgleichung, die mittels Radizieren gelöst
wird. Ist der Exponent x der der Potenz gesucht, so
handelt es sich um eine Exponentialgleichung, die durch Logarithmieren
gelöst wird. |
|
M.5 |
|
Vorzeichen beim Radizieren. |
Es wird gezeigt, wie man die
Vorzeichen der Lösungen der Potenzgleichung x^(n/m) = c mit
rationalem Exponenten berechnet. Die Lösungsvariable sei x.
Das Vorzeichen der Lösung x hängt ab vom Vorzeichen von
c, sowie davon, ob n und m gerade oder ungerade
Zahlen sind. |
|
M.6 |
|
Bruchrechnen. Was gibt 4
- 2 : ½ + 1? |
Es wird gezeigt, wie man das Produkt
von einer Zahl und einem Bruchterm berechnet. |
|
M.7 |
|
Zylinder. Vektordarstellung |
|
|
M.8 |
|
Tangentialebene an einen Zylinder |
|
|
M.9 |
|
Verschiebung des Graphen einer
Funktion |
|
|
M.10 |
|
Spiegelung eines Funktionsgraphen an
der x-Achse |
|
|
M.11 |
|
Spiegelung eines Funktionsgraphen an
der y-Achse |
|
|
M.12 |
|
Ausklammern mit Gewalt |
|
|
M.13 |
|
Spiegelung eines Funktionsgraphen an
g:y = x |
|
|
M.14 |
|
Eine Umkehrfunktion bestimmen |
|
|
M.15 |
|
Sind "x im Quadrat"
und "Wurzel aus x" Umkehrfunktionen voneinander? |
|
|
M.16 |
|
Spiegelung eines Funktionsgraphen an
einer horizontalen Geraden |
|
|
M.17 |
|
Spiegelung eines Funktionsgraphen an
einer vertikalen Geraden |
|
|